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a b s t r a c t

Mathematical questions related to determining the structure of a protein from NMR orientational
restraints are discussed. The protein segment is a kinked alpha helix modeled as a regular alpha helix
in which two adjacent torsion angles have been varied from their ideal values. Varying these torsion
angles breaks the helix into two regular helical segments joined at a kink. The problem is to find the tor-
sion angles at the kink from the relationship of the helical segments to the direction of the magnetic field.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction orientation restraints can provide information on the structure at a
1.1. Membrane proteins

Fine structural detail is important for understanding the
functional mechanisms of membrane proteins. For channels con-
ducting ions the mechanism requires a precise alignment of the
atoms near the active site. In the M2 protein from influenza A,
for example, it is known [1] that a glycine is one of the most con-
served amino acids in the evolution of the protein. A detailed
knowledge of the structure near that residue will help in under-
standing why it is conserved, and why it is important in conduction
of protons [2]. One possibility is that the helix forms a kink there.
Either the kink at Gly helps to align the other residues in the helix
properly, or else the kink exposes a carbonyl oxygen to function in
conduction of the ions. This paper explores a model in which NMR
ll rights reserved.

Murray), cross@magnet.fsu.
kink.

1.2. NMR orientational restraints

Orientational restraints are obtained from NMR spectra of
samples that are uniformly aligned with respect to the magnetic
field. These orientational restraints are obtained from a class of
separated local field experiments that represents refinements
[3,4] on the PISEMA experiment [5]. Utilizing these restraints has
been described in detail [6–8] [9]. If proteins are put in a fixed ori-
entation in a magnetic field, the signal from the nuclear spins in
the molecule is dependent on the orientation of the sample, and
one can find the coordinates of the unit magnetic field direction
in molecular frames rigidly attached to the molecule. This ap-
proach has been used to characterize the structure of quite a few
membrane protein structures [10,1,11–20].

Orientation dependent structural restraints can also be
obtained in solution NMR experiments through residual dipolar
coupling (RDC) measurements of proteins in partially oriented
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media. The incorporation of RDC measurements has allowed
structural characterization of large soluble proteins [22,23] as
well as large membrane proteins [24]. RDC values obtained from
membrane proteins solubilized in detergent micelles provide an
opportunity to characterize protein secondary structure topology.
Secondary structure dependent patterns are expected for RDC
spectra [25] which allows the direct comparison of secondary
structure topologies determined from both solution and solid
state NMR. These techniques are becoming common for mem-
brane proteins [26–29,14].

1.3. Kinked alpha helix

In NMR experiments such as PISEMA an alpha helix shows a res-
onance pattern called a PISA wheel, and the angle between the he-
lix axis and the magnetic field direction can be found from the
pattern [32,9,8,16]. This angle is called the tilt angle and is denoted
s. When this helix is a segment of a membrane protein in a lipid
bilayer, and the bilayer normal is parallel to the magnetic field
direction, s also gives the tilt of the helix in the membrane. When
PISEMA shows two distinct resonance patterns for a single helix,
this indicates a kinked alpha helix with two straight alpha helical
segments, and the tilt angles s and s0 for each segment can be
found.

Of more importance in understanding the protein structure is
the kink angle j, the angle between axes of the two helical
segments. This cannot be determined from s and s0 alone. From
elementary considerations, j is between js0�sj and s0 + s (For pro-
teins crossing the membrane, the tilt angle can be assumed to be
between 0� and 90�.).

To find the kink angle, more information than the two tilt angles
is needed (see Fig. 1). For each alpha helical segment, the PISEMA
experiment is capable of finding a rotation angle q in addition to
the tilt angle s. The angles q, s are the spherical coordinates of the
magnetic field direction in a frame rigidly attached to the straight
alpha helix segment. This frame is referred to as a helix axis frame.

Given a simplified model of a kinked alpha helix, the kink angle j
can be found from the angles q, s and q0, s0. This paper explains the
model and the method of solving for the kink angle. In the model, a
Fig. 1. A kinked helix with segments having tilt angles s and s0 . B0 is the unit
direction of the magnetic field and also the normal to the membrane bilayer
surface. The nitrogen atoms of the straight helical segments lie on the two
cylinders. Rotating helix 2 about B0 does not change the tilts and gives values of the
kink angle j in the range js0 � sj6j6s0 + s. The kink angle cannot be found from the
two tilt angles alone.
kinked alpha helix is a pair of straight alpha helix segments with
uniform /0, w0 torsion angles except for two torsion angles varied
from /0, w0 at a single alpha carbon between them where the kink
is formed. Now the angles /, w can be solved given q, s and q0, s0,
and from /, w the kink angle j can be computed. The calculation
is carried out in a very general fashion so that the solution is in
terms of /0, w0 and the various bond angles along the backbone,
and these can be chosen appropriate to the protein environment.

1.4. Mathematical tools

A string of bonded atoms such as the backbone of a protein can
be thought of as a sequence of points in space, a discrete curve.
Finding the shape of this curve is one important step in determin-
ing structure. In the differential geometry of smooth curves the
Frenet frame is used to describe the shape of the curve in terms
of curvature and torsion. A modification of the Frenet frame is used
here to explicitly write the transformation between frames in
terms of torsion angles and bond angles. The transformations can
be written using rotation matrices or quaternions. Similar compu-
tations are found in earlier papers [30,31]. The concept of a Frenet
Frame unifies these ideas in terms of differential geometry of dis-
crete curves.

Given a frame at a nitrogen on the helix, the frame at the sub-
sequent nitrogen is given by rotating this frame about the helix
axis. (Since we are concerned only with orientations, the transla-
tion is ignored.) For an alpha helix the rotation angle is approxi-
mately 100�, giving 3.6 nitrogen atoms on the backbone per turn
of the helix. This rotation angle and axis can be computed in
terms of torsion angles and bond angles using Frenet frame
calculations.

A regular alpha helix is one whose torsion angles are the same
at each alpha carbon. The torsion angles are fixed at ideal values
denoted /0 and w0 in the region of the Ramachandran plane for al-
pha helices. A kinked helix is formed by taking a single regular al-
pha helix and varying from the ideal values two torsion angles /
and w at an alpha carbon near the middle of the helix. These tor-
sion angles parameterize the kink. The resulting kinked helix is
formed by two regular alpha helical segments. The angle between
the axes of the helical segments is called the kink angle j.

The orientation of the segments is given by frames H1 and H2 for
the first and second segments respectively. The third vector in the
frame H1 is in the direction of the axis of the first helical segment
and similarly for H2. For this reason they are referred to as helix
axis frames. The frames are chosen to be fixed in one of the molec-
ular frames along the helix segment. The orientation of the helix
segments with respect to the unit magnetic field B0 can be found
if the coordinates of B0 in each of the two frames is known. If the
coordinates of B0 in the frames H1 and H2 are given by vectors X1

and X2 respectively, then H1X1 = H2X2. This gives an equation of
the form X2 ¼ H�2H1X1, and since X1 and X2 are unit vectors, this
vector equation gives essentially two equations for / and w. If X1

and X2 are found from the experiment (usually in terms of spheri-
cal coordinates q, s and q0, s0, the equations can be solved for the
torsion angles / and w at the kink, giving the structure of the
kinked helix. The kink angle j can then be computed in terms of
the torsion angles / and w, Eq. (15).

2. Frenet frames

Here we discuss the Frenet frames for a discrete curve. If pj is a
sequence of points in 3D space then unit tangent vectors are de-
fined by

tj ¼
pjþ1 � pj

jpjþ1 � pjj
;
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and if adjacent tangent vectors are not parallel, binormal vectors by

bj ¼
tj�1 � tj

jtj�1 � tjj

and normal vectors by

nj ¼ bj � tj:

The Frenet frames are

Fj ¼ ðtj;nj;bjÞ; ð1Þ

which may be thought of as a 3 � 3 matrices with column vectors tj,
nj, bj.

Curvature angles aj at pj and torsion angles sj about tj can be de-
fined by

Rðbj;ajÞtj�1 ¼ tj

Rðtj; sjÞbj ¼ bjþ1:

Here R(u,g) indicates counterclockwise rotation an angle g about
the vector u.

The rotation from one Frenet frame to the next is given by

Rðbjþ1;ajþ1ÞRðtj; sjÞFj ¼ Fjþ1 ð2Þ

or equivalently

FjRxðsjÞRzðajþ1Þ ¼ Fjþ1 ð3Þ

where Rx and Rz are rotations about the x and z axes, given by the
rotation matrices

RxðgÞ ¼
1 0 0
0 cos g � sin g
0 sin g cos g

0
B@

1
CA RzðgÞ ¼

cos g � sing 0
sing cos g 0

0 0 1

0
B@

1
CA:

ð4Þ

Eq. (3) is essentially the same as formula (1) in [21 and is sometimes
referred to as Eyring’s formula.

2.1. Helix axis frame

A helix axis frame is defined at each nitrogen on the backbone of
a regular helix. The third vector in the helix axis frame is the helix
axis and the first two vectors are perpendicular to the axis. The he-
lix axis frame H is chosen so that it is constant in relation to the
Frenet frame, i.e., F � H is the same at each nitrogen atom. (Here
� denotes the transpose.) Usually just one of these frames is chosen
to orient the helix segment, but since for an alpha helix the frames
A

Fig. 2. A kinked alpha helix. The kink begins at the alpha carbon Ca�J. All the nitrogens up
on a cylinder whose axis is u0 . The angle between the axes is j. The torsion angles /, w at
j = 0. (A) View down the axis of the first straight helix segment. The circle in the figure
rotate approximately 100� about the axis as we go to successive
nitrogen atoms, the orientation of one frame gives the orientation
of all the others.

NMR experiments can find the coordinates of the unit magnetic
field direction in all helix axis frames for a regular helix. In partic-
ular, an experiment called PISEMA can find these coordinates from
a resonance pattern called a PISA wheel [19,9].

The computations in Appendix A give coordinates of the helix
axis in the Frenet frame at the nitrogen. An approximation made
there is that the bond angles at the nitrogen and carbonyl carbon
are the same and that the geometry at the alpha carbon is tetrahe-
dral, cosc = 1/3. This leads to simple mathematical expressions for
quantities of interest. The computations can be refined by changing
these bond angles to the desired values.

To write the coordinates of the helix axis in the Frenet frame at
the nitrogen, let

s ¼ /þ w
2

t ¼ /� w
2

:

where / and w are parameters for the regular helix. Let

A ¼ AðsÞ ¼
cos c

2 cos sffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2
p ¼ cos s

2
1þ 2 cos2 s

� �1=2

:

B ¼ BðsÞ ¼
sin c

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2
p ¼ 1

1þ 2 cos2 s

� �1=2

:

ð5Þ

Now A2 + B2 = 1 and it follows from (26) that the unit helix axis is
given by

u ¼ F

A

B cos t
B sin t

0
B@

1
CA ¼ FRxðtÞ

A

B
0

0
B@

1
CA: ð6Þ

where F is the Frenet frame at N.
A helix axis frame can be defined by projecting the unit tangent

vector t perpendicular to u to get the first vector. The axis u is the
third vector, and the second vector is the cross product of u with
the first. The sequence of vectors forms a right handed orthonor-
mal frame given by

H ¼ F

B 0 A

�A cos t sin t B cos t

�A sin t � cos t B sin t

0
B@

1
CA ¼ FRxðtÞMðsÞ ð7Þ

where M = M(s) is defined by
B

to NJ are on a cylinder whose axis is u. The subsequent nitrogens starting at NJ+1 are
Ca�J determine j. If these angles are equal to the standard torsion angles /0, w0, then
is the cylinder containing the nitrogens on the first helix. (B) Side view.



Fig. 3. Plot of level curves of cosj for /0 = �65�, w0 = �40�. The maxima near the
center are cosj = 1 at (/0,w0) and (�w0,�/0). The saddle point near the origin is
cosj � .88 at (t0,�t0) where t0 = (/0;�w0)/2.

Table 1
Structure solutions for a kinked alpha helix with s = 15.0� and s0 = 25.0�. The first
helical segment has fixed orientation, q = 0.0�, while the second helix segment
orientation is varied by �Dq.

Dq (�) / (�) w (�) j (�)

0 �72.6 �52.7 11.0
47.6 18.3 37.5

70 �102.4 �28.1 29.5
77.4 43.7 33.0
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M ¼
B 0 A
�A 0 B

0 �1 0

0
B@

1
CA: ð8Þ
Fig. 4. Theoretical PISEMA data for a kinked alpha helix with s = 15.0� and
s0 = 25.0�. Black data corresponds to the first segment of helix while the red and
blue data represent two orientations of the second segment of helix that differ by
Dq = 70.0� (see text). The circles indicate the positions of the resonances while the
curves represent the theoretical data for all values of q and q0 . Numbers by the
resonances indicate the residue number in the helix primary sequence and suffix a
indicates the data with a nonstandard shift in q. (A) The PISA wheel representation
of the data. (B) The dipolar wave representation of the data. (C) Close up of the site
of the kink from panel B where Dq can be calculated.
3. Kinked alpha helix

When a resonance pattern from PISEMA shows two PISA wheels
instead of one, this may indicate a kinked helix, that is, two differ-
ent regular helical segments joined together.

We define a kinked alpha helix as a backbone structure with /,
w angles equal to ideal alpha helical values /0, w0 except at the
kink where / and w remain variable. See Fig. 2. We refer to the reg-
ular helix before the kink as the first helix and the regular helix
after the kink as the second helix. We study the angle between
the axes of the two regular helices and the change of the helix axis
frame between the helices as functions of (/,w).
3.1. Notation for kinked helix

To set up the notation let Fj be the Frenet frames and Hj the helix
axis frames at the N atoms along the kinked helix. Let /0 and w0 be
the parameters of the regular helices and let

s0 ¼
/0 þ w0

2
t0 ¼

/0 � w0

2
:

Define rotation matrices T and S0 by

S0 ¼ Rxðt0ÞMðs0Þ and T ¼ Tð/;wÞ ¼ Rxð/ÞRzðcÞRxðwÞRxðpÞ: ð9Þ

and let T0 = T(/0,w0). By (7), frames Hj and Fj on a regular alpha helix
are related by

Hj ¼ FjS0: ð10Þ



Fig. 6. Schematic drawing of protein backbone geometry. The primes indicate
subsequent atoms of the same type. The planes CaCN and CNC0a are parallel. The
dihedral angle from CNC0a to NC0aC0 is the / torsion angle and the dihedral angle
from NC0aC0 to C0aC0N0 is the w torsion angle. The bond at the Ca is tetrahedral with c
approximately 70.5�. The angles a and b are approximately 60�.
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Suppose FJ is the Frenet frame before the kink, then by (29) the sub-
sequent frame is given by

FJþ1 ¼ FJT: ð11Þ

where T = T(/,w) and / and w are the torsion angle between the
regular alpha helical segments. It follows that

HJþ1 ¼ HJS
�
0TS0:

If T = T0 then there is no kink, the helix is a regular alpha helix,
and the third vector in both frames HJ and HJ+1 is the axis of the he-
lix. It follows that

S�0T0S0 ¼ Rzðh0Þ: ð12Þ
3.2. The kink angle j

As we saw, j cannot be found from the tilt angles of the helix
segments. It is, however, a function of the angles / and w at the
kink. In this section the angle j between the two helix segments
is found as a function / and w.

The axis of the first helix is the third column of HJ, and the axis
of the second is the third column of HJ+1, so cosj is the 3, 3 entry of

H�J HJþ1 ¼ S�0TS0: ð13Þ

By (9) this can be written as

cosj ¼ M3ðs0Þ�S�0TS0M3ðs0Þ
¼ M3ðs0Þ�Rxð/� t0ÞRzðcÞRxðwþ t0ÞRxðpÞM3ðs0Þ:

ð14Þ

where M3 = (A,B, 0)0 is the third column of M. Using the tetrahe-
dral geometry equation cos c ¼ 1

3 (14) gives the fairly simple
formula

cosj ¼ ½3ð1þ 2 cos2 s0Þ��1½2 cos2 s0 þ 4 cos s0 cosðu� t0Þ
þ 4 cosðwþ t0Þ cos s0 � cosðwþ t0Þ cosðu� t0Þ þ 3

� sinðu� t0Þ sinðwþ t0Þ�: ð15Þ

Fig. 3 shows the level curves in /, w space of cosj as a function of /,
w, where /0 = �65� and w0 =�40� are set at a fixed value for an al-
pha helix.

Note that the right hand side of (15) is invariant under the
transformations

ð/� t0;wþ t0Þ ! ðwþ t0;/� t0Þ: ð16Þ
ð/;wÞ ! ð�w;�/Þ ð17Þ
φ
150 100 50 0 50 100 150

ψ

150

100

50

50

100

150

A B

Fig. 5. Graphical representation of the solutions to the vector Eq. (21) for two different o
the first, second and third coordinates of (21) respectively. (A) Solutions for s = 15.0�, s0

q0 =�1062.5�.
These symmetries are seen in Fig. 3. Also note that substituting
/ = /0 and w = w0 in (15) gives cosj = 1, since the helix is straight
and j = 0.
4. Finding a structure

4.1. Solving for / and w

The PISEMA experiment can determine the coordinates of the
unit magnetic field direction B0 in helix axis frames for each seg-
ment of a kinked helix. From this we show how to compute the
/, w angles at the kink.

Subsequent helix axis frames in a segment are related by
Hj+1 = Hj Rz(h0) where h0 is the rotation angle for the ideal alpha he-
lix with parameters /0, w0. The angle h0 can be computed from (28)
and is approximately 100� for an alpha helix. If the coordinates B0

are known in any one helix axis frame in a segment then it can be
found in all the others. So assume that we have the coordinates of
B0 in frames HJ and HJ+1 at the kink.

Spherical coordinates s and q are used for B0. Let

Xðq; sÞ ¼
sin s cos q
sin s sin q

cos s

0
B@

1
CA ð18Þ

be the coordinates of B0 in the helix axis frame HJ, so that

B0 ¼ HJXðq; sÞ: ð19Þ

Similarly suppose that q0, s0 are spherical coordinates of B0 in the
frame HJ+1, so that

B0 ¼ HJþ1Xðq0; s0Þ: ð20Þ

The angles s and s0 are referred to as the tilt angles.
φ
150 100 50 0 50 100 150

ψ

150

100

50

50

100

150

rientations of the second helical segment. The red, green and blue curves represent
= 25.0�, q = 0.0�, and q0 =�992.5�. (B) Solutions for s = 15.0�, s0 = 25.0�, q = 0.0�, and
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From the PISEMA experiment s, s0, q, and q0 can be found. From
this the torsion angles / and w can be found and then using (15)
the kink angle j can be found. We have

Xðq0; s0Þ ¼ H�Jþ1HJXðq; sÞ ¼ S�0Tð/;wÞ�S0Xðq; sÞ ð21Þ

The vector Eq. (21) gives three equations for the two variables /,
w. Since the vector X is a unit vector, the value of two coordinates
gives the third up to a factor ±1. So there are essentially two equa-
tions which can be solved for / and w. Note that if / = /0 and
w = w0 then by (12), Eq. (21) becomes X(q0,s0) = Rz(�h0)X(q,s) and
s = s0 and q0 = q � h0.

Finding a protein structure compatible with the data can now
be done. The first and third coordinates of the Eq. (21) give two le-
vel curves in the /, w Ramachandran plane and the intersection
gives possible values of the the torsion angle at the kink. The sec-
ond coordinate of Eq. (21) should be checked at each of these
values.
4.2. Example structure

The utility of the calculation is best shown through an example.
Suppose we have an alpha helix composed of 20 amino acids. The
helix structure is kinked in the middle such that 10 residues lie on
either side of the kink site. Using the notation of Section 3.1, J = 10.
The two segments have tilt angles s = 15.0� and s0 = 25.0�. Expected
15N anisotropic chemical shift and 1H–15N dipolar coupling exper-
imental data can be calculated for the helical segments according
to the method of Denny et al. [32], using a dipolar coupling con-
stant of 10.735 kHz and 15N anisotropic chemical shift tensor ele-
ments of d11 = 228, d22 = 80, d33 = 57 ppm.

Two cases are examined here. The first helical segment re-
mains fixed with orientation angle q = 0� as defined by the coor-
dinates of B0 in H1, the helix axis frame at the first nitrogen on
the helix. So as defined by (19), q = �9h0. The second helix orien-
tation angle is defined at residue 11 and is chosen to be either
the expected value for a uniform alpha helix, q0 = �10h0, or with
a larger rotation of q0 = �9h0 � (h0 + Dq). The angle h0 is given by
(30) and is approximately 100� in the calculation described here.
Choosing Dq = 70.0� for the latter case produces the two sets of
PISEMA data presented in Fig. 5A. The data for the first segment
of helix remains constant for both cases (black data). Note that
the change in the q0 value has changed the position of the reso-
nances on the PISA wheel pattern for the second segment of the
helix (compare red and blue data).

The method outlined in Section 4.1 is now applied to the
hypothetical experimental data for the two helix systems. The
intersections of the three curves dictated by Eq. (21) give the tor-
sion angle solutions satisfying the experimental data. The solu-
tions are found by plotting level curves, see. The /, w solutions
are presented in Table 1 along with the corresponding kink an-
gles. For the cases examined here only two solutions exist for
each set of data, and in each set the two solutions lie in distinct
regions of /, w space.

In most cases, only torsion angles in the bottom left quadrant
of /, w space are valid structures. Based on stereochemical con-
siderations for dipeptides the solutions lying in the left handed
alpha helical region are only worth considering for cases where
glycine residues are present at the kink site. Amino acids with
extended side chains are predicted to have severely restricted /
, w values and in particular / should not be larger than zero
[33]. The other amino acids encounter steric clash between the
side chain and the polypeptide backbone. However, it is worth
noting that many protein structures in the PDB have torsion an-
gles in sterically disallowed regions of /, w space [34]. Presum-
ably these torsion angles are permitted by steric compensation
from the nearby structure in the protein, a view supported by
statistical reviews of protein structures showing that the ob-
served clustering of torsion angles in protein structures is depen-
dent on the type of secondary structure [35] and amino acid side
chain type [36]. For the cases presented here (Dq = 0� and 70�)
the sterically the sterically favorable torsion angle solutions for
right handed alpha helical structures give kink angles for the
helices of 11.0� and 29.5�. A helical model for the larger kink an-
gle was calculated and is presented in Fig. 2.

Changes in the helix orientation of the second half of a kinked
helix can represent drastically different kinked helix structures.
The helix orientation can be determined precisely for uniform heli-
ces using PISEMA experiments and is easily viewed using the dipo-
lar wave [37] analysis shown in Fig. 4B.

Deviations from the ideal PISA pattern are easily observed using
chemical shift or dipolar wave analysis [20, 38, 39] which is sensi-
tive to gradual changes in helix tilt and periodicity as well as
detecting kink sites [40]. The dipolar wave analysis for the model
kinked helix system is shown in Fig. 4B.

Examining the latter segment of the helix system (red and blue
data) reveals that the resonances for the second set of data have
distinctly different phase than the first set of data indicating that
a non-uniform (i.e. not 100�) change in q has occurred. The change
in phase, Dq, is the deviation of the observed resonances from the
values expected if the second helix had the same phase as the first
segment of helix. Calculation of Dq can be seen in Fig. 4C. For any
set of fixed tilt angles the phase change is linked directly to the
structure of the helix kink through a three step process: (1) fit
the PISEMA data giving helix tilt and rotation parameters for both
helix segments, (2) use the parameters in the gram matrix equa-
tion to get the possible /, w solutions and (3) use the /, w solutions
Eq. (15) to get the kink angle.

In conclusion, when two distinct PISA wheel patterns are ob-
served for a single helix and helix orientations can be determined
for each segment then the structure of the kink can be calculated
under the assumption that the structure of the helix is approxi-
mated by a single set of non-ideal torsion angles joining two ideal
helical segments.

4.3. List of variables
Symbol
 Meaning
 Reference
a, b, c
 acute bond angle at C, N, Ca resp.
 Fig. 6

j
 angle between axes of helixes 1 and 2
 Eqs. (13)

and (14)

Dq
 q � q0 � h0
 Section

4.2

/, w
 torsion angles at Ca

/0, w0
 standard torsion angles for alpha helix

q, s
 rotation and tilt angle for helix 1
 Eq. (19)

q0, s0
 rotation and tilt angle for helix 2
 Eq. (20)

h0
 rotation angle about the helix axis to

subsequent residue for regular helix
with standard torsion angles /0, w0.
Eq. (29)
s, t
 (/ + w)/2, (/ � w)/2

s0, t0
 (/0 + w0)/2, (/0 � w0)/2

B0
 unit direction of magnetic field

Fj
 jth Frenet frame
 Eq. (1)

Hj
 jth helix axis frame
 Eq. (7)

S0
 rotation from F to H for regular helix

with standard torsion angles /0, w0.

Eq. (10)
T(/,w)
 rotation to next Frenet frame at N
 Eq. (11)

X(q,s)
 rectangular coords as function of

spherical coords

Eq. (18)
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Appendix A
A.1. Rotations

Computation using Frenet frames is done by multiplying a se-
quence of rotations. These can be written in terms of the matrices
Rx and Rz, but it is sometimes convenient to use quaternions. The
rotation R(u,h) can be written in terms of the unit quaternion

q ¼ eu h
2
¼ cosðh=2Þ þ sinðh=2Þu

where the vector u = (u1,u2,u3) is identified with the quaternion
u = u1I + u2J + u3K. The action of q on any vector X is given by
X ? qXq⁄ where q⁄ = cos(h/2) � sin(h/2)u is the conjugate quater-
nion. The result is the same as R(u,h)X. Multiplication of rotations
can be done by multiplying the corresponding quaternions using
the rules

I2 ¼ J2 ¼ K2 ¼ IJK ¼ �1:

The advantage of using quaternions is that the axis of the result-
ing rotation can be found as the vector part of the quaternion. The
scalar part of the quaternion is cos(h/2) where h is the angle of
rotation. See [41] for other uses of quaternions.

A.2. Protein helices

The protein backbone is formed by a chain of covalently bonded
atoms N–Ca–C–N–Ca–C� � � repeating in units of three atoms. The
atoms N are nitrogens and C are (carbonyl) carbons. The atoms
Ca are called alpha carbons to which the side chains of the protein
are attached. Think of this long chain of atoms as a discrete curve
which can be analyzed using the Frenet frames discussed in Sec-
tion 2. Since the bonds are close to uniform along the backbone,
the curvature angles, in this situation called bond angles, are the
same at each atom of a given type, C, N or Ca. These angles (angles
a and b in Fig. 6) are determined by crystallographic studies and
are approximately 60� at N and C. The bonding at the Ca atoms fol-
lows tetrahedral geometry so cos c ¼ 1

3 and c is about 70.5�. The
bond lengths also approximately depend only on the type of atoms
bonded, but that will not concern us here.

Successive atoms Ca–C–N–Ca lie in a plane called the peptide
plane and the torsion angle about the C–N bond is assumed to be
180� (p radians). The only degrees of freedom left in the curve
are the torsion angles about the N–Ca and Ca–C bonds. The torsion
angle about N–Ca is denoted / and the torsion angle about Ca–C is
denoted w. Often protein databases analyze a structure by listing /
and w torsion angles along the backbone. We refer to this as a
backbone structure.

Regular alpha helical structures have constant / and w angles
torsion angles. In this paper, as an example, regular alpha helix seg-
ments with torsion angles / = �65� and w = �40� are used. (This is
typical for transmembrane proteins, see [42].) Level curves of func-
tions of / andwdefining properties of protein helices can be graphed
on a square �180� 6 / 6 180�, �180� 6w 6 180� called a Rama-
chandran plane and such a graph is called a Ramachandran plot.

A.3. Helix parameters

A regular helix in a protein secondary structure is given by rep-
etition of a euclidean motion given by a rotation and a translation
of the backbone. We consider only the rotational part and the rela-
tion between the Frenet frames. We consider the frame F1 at atom
N and F4 at the subsequent N. If /, w are torsion angles at the Ca in
between, from Section 2

F4 ¼ F1Rxð/ÞRzðcÞRxðwÞRzðaÞRxðpÞRzðbÞ; ð22Þ
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where c ¼ arccos 1
3 is the bond angle at the alpha carbon, and a and

b are the bond angles at the C and N atoms respectively. The angles
a and b generally differ by less that 3 degrees, so we will assume
that a = b and (22) becomes

F4 ¼ F1Rxð/ÞRzðcÞRxðwÞRxðpÞ: ð23Þ

The product of the four rotations on the right is given by the
quaternion

eI/2eKc
2eIw2I ¼ cos

c
2

IeIs þ sin
c
2

etIJ; ð24Þ

where

s ¼ /þ w
2

t ¼ /� w
2

: ð25Þ

The unit axis is given by the normalized vector part of the quater-
nion (24),

u ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2
p cos

c
2

cos sI þ sin
c
2

etIJ
� �

ð26Þ

where

a ¼ � cos
c
2

sin s ð27Þ

is the scalar part of (24).
If h is the angle of rotation, cos(h/2) is given by the scalar part of

(24),

cos
h
2
¼ � cos

c
2

sin s: ð28Þ

For frames Fj at atoms N on the regular protein helix, where

Fjþ3 ¼ FjRðu; hÞ where Rðu; hÞ ¼ Rxð/ÞRzðcÞRxðwÞRxðpÞ: ð29Þ

Eq. (28) can be used to get a simple approximate formula for the
rotation angle of a regular helix with torsion angles / and w. Squar-
ing both sides of (28) using cos c ¼ 1

3 get

3 cos h ¼ 1� 4 cos2 /þ w
2

; ð30Þ

a known formula [43] for the rotation angle h of a protein helix. For
an alpha helix with / = �65� and w = �40�, (30) gives h = 100�
approximately, or 3.6 residues (Ca atoms) per turn of the helix.

A.4. Symmetry of j

Two symmetries appear in the Fig. 3 which are not immediately
apparent from the geometry of the situation. They are seen in the
expression (15), but they can also be deduced from (14) using
properties of rotations:

(i) (/,w) M (�w, � /).
This symmetry follows from (14) by taking the transpose to
get
cos j ¼ M�
3RxðpÞRxð�w� t0ÞRzð�cÞRxð�/þ t0ÞM3:
Since two Rx rotations commute and Rx(p)Rz(�c) = Rz(c)Rx(p), get

�
cos j ¼ M3Rxð�w� t0ÞRzðcÞRxð�/þ t0ÞRxðpÞM3: ð31Þ
Now comparing with (14), the symmetry follows.
(ii) (/ � t0, w + t0) M (w + t0, / � t0). To see this symmetry, first

note that since the third coordinate of M3 is 0,
Rz(p)M3 = �M3. Inserting �Rz(p)M3 in place of M3 in (31) get
cos j ¼ M�
3RzðpÞRxð�w� t0ÞRzðcÞRxð�/

þ t0ÞRxðpÞRzðpÞM3: ð32Þ
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Since the two Rz rotations commute and Rx(u)Rz(p) = Rz(p)Rx(�u)
for any u, it follows that
cosj ¼ M�
3Rxðwþ t0ÞRzðcÞRxð/� t0ÞRxðpÞM3:
Now comparing with (14), the symmetry follows.

A.5. Methods

All calculations were performed on personal computers using
Maple 11 from Waterloo Maple, Inc. Kinemage files were used to
draw the helix model for Fig. 2 and viewed with KiNG [44].
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